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Abstract

Nonlinear electromechanics and active control of a piezoelectric laminated circular spherical shallow shell are
quantitatively investigated in this paper. It is assumed that the piezoelectric layers are uniformly distributed on the

top and the bottom surfaces of the shell and the thickness of piezoelectric layers is much thinner than that of the
shell. The governing equations for the nonlinear dynamics of active control of the circular spherical shallow shell
with piezoelectric actuator are formulated and a semi-analytical method is employed to solve the nonlinear

governing equations. The numerical results show that the con®guration of nonlinear deformation and the natural
frequency of the shell structures can be actively controlled by means of high control voltages across the piezoelectric
layers and the jumping phenomenon may occur for the case of geometrical parameter g � �3�1ÿ m2��1=2f=h e1. In

addition the e�ect of large amplitude on the vibrating frequency is discussed by the Galerkin method and the KBM
perturbation. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The importance of piezoelectric materials has been considerably intensi®ed by researchers and
structural engineers in recent years because of their electromechanical property. Research and
experiments show that piezoelectric materials can be used as actuators/sensors to control structural
con®gurations and to suppress some undesired vibrations in, e.g., space structures, mirrors of telescopes,
antennas, robots, rotor systems and high-precision systems, etc. Most of these structures, especially
space structures, are required to be lightweight. Thus, the structures are often ¯exible and nonlinear
deformations under external static and dynamic excitations. In this case, nonlinear e�ect should be
considered in the development for structural controls.
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Linear theory of piezoelectric structures is established by using laminated structure theory on the basis
of mutual e�ects between piezoelectricity and mechanics of the structures (Tzou and Anderson, 1992;
Hubbard and Burke, 1992; Tzou, 1993, etc.). The numerical method such as the ®nite element method is
proposed to quantitatively analyze the dynamic control of piezoelectric structures (Tzou and Tsing,
1991; Tzou and Zhong, 1993; Hwang and Park, 1993). Since it is much more di�cult to get a set of
solutions for a nonlinear system than for a linear system, the theoretical researches for nonlinear
piezoelectric structures are mainly focused on the development of theoretical models but few
quantitative results for them are found in the literature. Librescu (1987) proposed a re®ned
geometrically nonlinear theory of anisotropic laminated shells. Sreeram et al. (1993) studied the
nonlinear hysteresis modeling of piezoelectric actuators. Lalande et al. (1993) investigated the nonlinear
deformation of a piezoelectric Moonie actuator based on a simpli®ed beam theory. Pai et al. (1993)
analyzed a composite plate laminated with piezoelectric layers. Yu (1993) reviewed the recent studies of
linear and nonlinear theories of elastic and piezoelectric plates. Zhou et al. (1994) studied the nonlinear
behavior of a vibrating diaphragm with nonlinear deformation quantitatively. Tzou and Zhou (1995)
quantitatively investigated the active control of nonlinear piezoelectric circular plates.

In this paper, the active control for static and dynamic behavior of piezoelectric laminated circular
spherical shells with geometrically nonlinear deformation is investigated. The nonlinear governing
equations of the piezoelectric shells with the von Karman type nonlinear deformation are formulated.
The numerical results for nonlinear static con®guration and the natural frequency of small vibration in
the vicinity of the con®guration of the shells imposed by the piezoelectric actuators via high input
voltage are obtained by a semi-analytical method. It is shown that both the con®guration and the
natural frequency can be controlled by the applied voltage across the piezoelectric layers and the
snapping phenomenon may occur for a large geometrical parameter of the shell. Finally, the e�ect of
large amplitudes of nonlinear free vibration on the vibrating frequency is discussed quantitatively, from
which, the extent of stability for the nonlinear free vibration is displayed.

2. Nonlinear mechanics of a piezoelectric shell

For simplicity, here we will concentrate our attention on the axisymmetric deformation of a circular
spherical shallow shell subjected to piezoelectric actuators. It is assumed that this shell is laminated with
two piezoelectric layers. The piezoelectric layers are uniformly distributed on the top and the bottom of
the shell. The same e�ect of the piezoelectric layers on the deformation are considered in both radial
and circumferential directions. Further, the thickness of piezoelectric layers is much thinner than that of
the elastic shell. From laminated shell theory (Tzou, 1993), we can write the mechanical equations of the
shell with geometrical nonlinearity as follows.

2.1. Equations of motion
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in which

Nr � Nm
r ÿNe

r , Ny � Nm
y ÿNe

y �4a,b�

Mr �Mm
r ÿMe

r , My �Mm
y ÿMe

y �5a,b�

2.2. Geometrical relations

After the geometrical relationship of von Karman's type for the deformation of the thin shell is
considered, the geometrical equations describing the nonlinear deformation can be written as
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2.3. Constitutive equations

Here, the linear mechanical and electrical materials of the piezoelectric spherical shell are given as
follows

Mm
r � D�kr � mky�, Mm

y � D�ky � mkr � �8a,b�

er � 1
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r � mNm
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Here, the superscripts `m' and `e' represent the mechanical and electric parts of the quantities,
respectively; Nr and Ny are membrane forces in the r- and y-directions, respectively; Mr and My are
bending moments in the r- and y-directions, respectively; kr and ky represent the increment of curvatures
of the deformed shell from its undeformed state in the r- and y-directions, respectively; u and w are the
radial displacement and transverse de¯ections of the shell, respectively; Y and m are Young's modulus
and Poisson's ratio, respectively; h and hp denote thicknesses of the shell and the piezoelectric layers,
respectively; D�� Yh3=�12�1ÿ m2��� is the bending sti�ness; fu

3 and fd
3 are control voltages across the top

and the bottom piezoelectric actuator layers, respectively; r is the mass density of the shell; t is the time
variable. The piezoelectric layers are assumed to be e�ective in only the radial and circumferential
directions and to have identical piezoelectric constants. This is, e31 � e32. For the circular shallow
spherical shell shown in Fig. 1, the undeformed form of the shell can be formulated by
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z�r� � ÿf
�
1ÿ r2

a2

�
�12�

in which f is the height of the shell and a is the radius of the circular edge of the shell (see Fig. 1).

2.4. Governing equations

Eliminating Ny, Mr, My, Qr, Qy, kr, ky, Er, Ey and u in eqns (1)±(11) and considering the condition of
applicability for shallow spherical shells (Zhou, 1989), one can obtain the following nonlinear
di�erential equations with two independent unknowns w and Nm

r :
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where 0< r< a and
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For the case of a stationary simply supported edge, the boundary conditions are
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In the following discussion, we will focus our attention on the case of the full bonded piezoelectric
layers with constant voltage fu

3 � ÿfd
3. For this case, we have

Fig. 1. A piezoelectric laminated nonlinear shallow spherical shell.
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3. Decomposition of response

In order to ®nd the solution of the nonlinear piezoelectric shell, we take a semi-analytical and semi-
numerical approach in which the response is decomposed into static and dynamic parts. Let w0�r� and
Nm

r0�r� be the solutions of the nonlinear static state of the shell, that is, they are governed by the
nonlinear equations
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with the boundary conditions
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Decomposing the response of w�r, t� and Nm
r �r, t� into the static part, w0�r� and Nm

r0�r� and the dynamic
part, wt(r, t ) and Nm

rt(r, t ) which are measured in the vicinity of the static con®guration of the
piezoelectric shell, we can write

w�r, t� � w0�r� � wt�r, t� �24�
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Substituting eqns (24) and (25) into the governing eqns (13)±(17), then, subtracting the static eqns (20)±
(23) from them, one can obtain the governing equations for the dynamic part of the response, i.e.,
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with boundary conditions
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4. Solutions of eqns (20)±(23)

After the following dimensionless quantities
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are introduced, the governing eqns (20)±(23) of the nonlinear static deformation can be reduced to
(Zheng and Zhou, 1990)
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The solutions of F0( y ) and S m
0 �y� to eqns (31)±(34) can be expressed by the series formulas (Zheng,

1990)

F0�y� �
X1
i�1

Aiy
i, S m

0 �y� �
X1
i�1

Biy
i �35a,b�

which have satis®ed the boundary conditions of eqns (33a,b). Substitution of eqn (35) into eqns (31)±
(32) and (34a,b) leads to the recurrence formulas for the unknown coe�cients Ai and Bi, that is,
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and the nonlinear algebraic equations
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for the independent unknown coe�cients A1 and B1. By using the Newton±Raphson method to solve
the nonlinear algebraic eqns (38) and (39), one can obtain the values of A1 and B1 and then Ai and Bi

(for ie 2) from the recurrence formulas of eqns (36) and (37). Thus, the static state of the piezoelectric
spherical shallow shell is obtained for given applied voltage fu

3 � ÿfd
3.

5. Solutions of eqns (26)±(29)

5.1. Dimensionless equations

We introduce the following dimensionless quantities

x � r

a
, �wt � 2

�
3
ÿ
1ÿ m2

��1=2wt

h
, �w0 � 2

�
3
ÿ
1ÿ m2

��1=2w0

h
, t � ont

�N
m

rt � 12
ÿ
1ÿ m2

�a2Nm
rt

Yh3
, �N

m

r0 � 12
ÿ
1ÿ m2

�a2Nm
r0

Yh3
, l � rha4

D
o2

n �40�

in which on is a natural frequency of the shell. Then, we write eqns (26)±(29) in the following
dimensionless form:
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5.2. Natural frequencyÐapplied voltage relation

For the case of small free vibrations of the piezoelectric shell in the vicinity of the nonlinear static
state, the nonlinear terms on the unknowns �wt and �N

m

rt in dynamic eqns (41)±(44) are neglected. Let
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Then, the eigenvalue equations for small vibrations can be deduced from
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According to the static solutions of eqns (35), we have
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in which ai and bi are constants to be determined. Substituting eqns (50) and (51) into eqns (46)±(49),
one can obtain the recurrence formulas
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2i�i� 1�

244gai �Xi
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35 i � 1, 2, 3, . . . �52�
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X1
i�0

ai � 0 �54�

X1
i�1
�2iÿ 1� m�iai � 0 �55�

X1
i�0
�2iÿ 1ÿ m�ibi � 0 �56�

The recurrence formulas of eqns (52) and (53) show that the only independent constants are a0, a1 and
b0. Once we express other constants ai and bi as the functions of the independent constants and the
eigenvalue of the problem, eqns (54)±(56) will become a system of algebraic equations with explicit form
on eigenvalue l and eigenvector �a0, a1, b0�T. This is �Kij�l��3�3�a0, a1, b0�T � 0. For a nonzero solution,
i.e., �a0, a1, b0�T 6� 0, we get a condition to determine the eigenvalue l similar to Zhou et al. (1994).

5.3. E�ect of large amplitude on frequency

Let U �(x ) be a permissible function of de¯ection which satis®es the boundary conditions of eqns
(43a) and (44a,c). Assume an approximate solution of eqns (41) and (42) in the form
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in which f �t� is an unknown function of variable t. Substituting eqn (57) into eqns (41) and (42) and
applying the Galerkin method to the ®rst equation, we obtain
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Using the Krylov±Bogoliubov±Mitropolsky (KBM) perturbation method (Nayhef and Mook, 1979) to
solve eqn (58), we obtain the amplitude-frequency relation

Fig. 2. Characteristic curves of static central de¯ection �3�1ÿ m2��1=2w0�0�=h vs piezoelectric voltage f� �
6�1ÿ m2��3�1ÿ m2��1=2e31�h� hp�fu

3=Yh
4. m � 0:3.
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Fig. 3. The ®rst mode shape of de¯ection of the piezoelectric shallow spherical shells for the small free vibration in the vicinity of

con®guration of nonlinear static deformation.

Fig. 4. Change of the ®rst natural frequency o 1a
2�rh=D�1=2 vs control voltage f� � 6�1ÿ m2��3�1ÿ m2��1=2e31�h� hp�fu

3=Yh
4.

m � 0:3.
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Fig. 5. Nonlinear coe�cient G1 of the ®rst mode vs control voltage f� � 6�1ÿ m2��3�1ÿ m2��1=2e31 �h� hp�fu
3=Yh

4. m=0.3.

Fig. 6. Nonlinear coe�cient G2 of the ®rst mode vs control voltage f� � 6�1ÿ m2��3�1ÿ m2��1=2e31 �h� hp�fu
3=Yh

4. m=0.3.
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G1G2Â

3 � . . . �63�

where o is the frequency of nonlinear vibration; Â denotes the amplitude of dimensionless de¯ection.
When the test function U ��x� is normalized by the form

U ��x�jx�0 � 1 �64�
AÃ is the amplitude of the dimensionless de¯ection at the center point of the shell in the vicinity of the
nonlinear static state. That is

Â � 2�3�1ÿ m�2�1=2wt

h

����
r�0

�65�

and the modal function (assumed eigenfunction) U ��x� is taken from the (exact) series-type
eigenfunctions Rt�x� in eqn (45a) for small vibration.

6. Numerical results and analysis (case study)

According to the analysis, a computer program was performed by computer for ®nding solutions of
the nonlinear piezoelectric circular shallow spherical shells. Due to the vibration of ®rst mode is more
prominent than others in practice, here, we restrict our attention to ®nding the dynamic characteristic of
the ®rst mode of vibration of the piezoelectric shells. Fig. 2 shows the characteristic curves of central

Fig. 7. Natural frequency o=o 1 and amplitude 2�3�1ÿ m2��1=2wt�0�=h relations for di�erent control voltage f� �
6�1ÿ m2��3�1ÿ m2��1=2e31 �h� hp�fu

3=Yh
4 and for di�erent geometrical parameter g � �3�1ÿ m2��1=2f=h. m � 0:3.
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de¯ection �3�1ÿ m2��1=2w0�0�=h with applied voltage f� � 6�1ÿ m2��3�1ÿ m2��1=2e31�h� hp�fu
3=Yh

4. The
natural frequency of small free vibration with vibration mode shown in Fig. 3 in the vicinity of the
nonlinear deformation con®guration is plotted in Fig. 4. Figures 5 and 6 indicate the varying of
coe�cients G1 and G2 with applied piezoelectric voltage, respectively. From Figs. 2 and 4, it can be
found that the jumping or snapping phenomenon of the piezoelectric shallow spherical shell may occur
for the cases of the shell with ge1 when the applied voltage approaches a critical value. Under this
value, the natural frequency of the shell decreases as applied voltage increases. It may capture the
critical value of applied voltage according to the condition that the natural frequency is approached to
zero. Corresponding to this snapping phenomenon, the coe�cients G1 and G2 related to nonlinear terms
in eqn (58) change rapidly when the applied voltage approaches the critical value. However, they change
a little for the case g< 1 in which there is no jumping phenomenon. Fig. 7 shows the e�ect of large
de¯ection on the natural frequency of the piezoelectric shells. When the applied voltage is under the
critical value for the case ge1, it is known that the vibrating frequency decreases as the amplitude
increases. As the frequency of vibration approaches zero, the nonlinear free vibration may lose stability.
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